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ABSTRACT

Magnetohydrodynamic star-in-a-box simulations of convection and dynamos in a solar-like star with

different rotation rates are presented. These simulations produce solar-like differential rotation with a

fast equator and slow poles, and magnetic activity that resembles that of the Sun with equatorward

migrating activity at the surface. Furthermore, the ratio of rotation to cycle period is almost constant

as the rotation period decreases in the limited sample considered here. This is reminiscent of the

suggested inactive branch of stars from observations and differs from most earlier simulation results

from spherical shell models. While the exact excitation mechanism of the dynamos in the current

simulations is not yet clear, it is plausible that the greater freedom that the magnetic field has due

to the inclusion of the radiative core and regions exterior to the star are important in shaping the

dynamo.

Keywords: Stellar magnetic fields(1610) — Magnetohydrodynamical simulations(1966) — Astrophys-

ical fluid dynamics(101)

1. INTRODUCTION

The Sun maintains a global dynamo with a magnetic

cycle of approximately 22 years, with activity appearing

at the surface at midlatitudes and propagating equa-

torward as the cycle progresses (e.g. Hathaway 2010).

Three-dimensional magnetohydrodynamic (MHD) sim-

ulations struggle to reproduce such cycles: often the ac-

tivity propagates poleward (e.g. Brown et al. 2011; Nel-

son et al. 2013), active latitudes do not coincide with

those in the Sun (e.g. Ghizaru et al. 2010), or there is a

mismatch between the simulated and solar cycle periods

(e.g. Käpylä et al. 2012; Warnecke 2018). Furthermore,

the simulations usually require substantially faster rota-

tion than in the Sun to achieve cyclic dynamos (e.g. Vi-

viani et al. 2018). Another issue arises when simulations

at different rotation rates are confronted with observa-

tions: cycles observed from stars other than the Sun

suggest that in the vicinity of the solar Rossby number,

which is the ratio of the rotation period to convective
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turnover time, the ratio of rotation to cycle period is

increasing as the Rossby number decreases (e.g. Olspert

et al. 2018). Simulations often produce the opposite

trend (e.g. Warnecke 2018; Strugarek et al. 2018). Typ-

ically more than one of these defects is found in any

given simulation.

There are several possible reasons for the mismatch

between simulations and reality. A major factor in this

is likely to be the inability of current simulations to cap-

ture stellar convective flows accurately enough. This is

known as the convective conundrum, and manifested by

too high large-scale velocity amplitudes in simulations

in comparison to the Sun (e.g. Hanasoge et al. 2012;

O’Mara et al. 2016; Schumacher & Sreenivasan 2020).

This often leads to anti-solar differential rotation in sim-

ulations with solar luminosity and rotation rate (e.g.

Käpylä et al. 2014), and very high resolutions in addi-

tion to highly supercritical dynamos are likely needed to

overcome this (Hotta & Kusano 2021).

Another factor is that stellar dynamo simulations are

often done in spherical shells where only the convection

zone (CZ), or additionally a part of the radiative core

is modeled (e.g. Guerrero et al. 2019; Bice & Toomre

2020). This necessitates the use of boundary conditions
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which may not always be appropriate and which can af-

fect the dynamo solutions in ways that are a priori not

obvious (e.g. Cole et al. 2016). In the present study a

star-in-a-box model, where a spherical star is embed-

ded into a Cartesian cube, is used to model a solar-like

star in a rotational regime where cyclic solutions are ex-

cited. The model thus includes the radiative core and

regions exterior to the star. The former enables contri-

butions to the dynamo from the interface between ra-

diative and convective zones, whereas the latter is usu-

ally not considered to be important in the maintenance

of the dynamo. However, including the outer layers is

less restrictive than imposing mathematically or numer-

ically convenient boundary conditions on the flows and

magnetic fields, and which can also affect the resulting

dynamo solution (e.g. Warnecke et al. 2016).

2. MODEL

The star-in-a-box model described in Käpylä (2021)

is used; see also Dobler et al. (2006). A star of radius

R is embedded into a Cartesian cube with a side length

H = 2.2R. Equations governing the system are:

∂A

∂t
=U ×B − ηµ0J , (1)

D ln ρ

Dt
=−∇ ·U , (2)

Du

Dt
=−∇Φ− 1

ρ
(∇p−∇ · 2νρS− J ×B)

−2Ω×U + fd, (3)

ρT
Ds

Dt
=−∇·(Frad+FSGS)+H−C +2νS2+µ0ηJ

2,(4)

where A is the magnetic vector potential, U is the ve-

locity, B =∇×A is the magnetic field, J =∇×B/µ0

is the current density, µ0 is the permeability of vacuum,

η is the magnetic diffusivity, D/Dt = ∂/∂t + U · ∇ is

the advective derivative, ρ is the fluid density, Φ is the

gravitational potential, p is the pressure, and ν is the

kinematic viscosity. The traceless rate-of-strain tensor

is given by Sij = 1
2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
− 1

3δij∇ ·U , where δij

is the Kronecker delta. The angular velocity is given by

Ω = (0, 0,Ω0), fd is a damping function, T is the tem-

perature, and s is the specific entropy. Frad and FSGS

are the radiative and subgrid-scale (SGS) entropy fluxes,

and H and C describe heating and cooling, respectively.

The gas obeys an ideal gas equation of state with

p = RρT , where R = cP − cV is the gas constant, and

cP and cV are the heat capacities at constant pressure

and volume, respectively. The gravitational potential

Φ corresponds to a polytrope of index n = 1.5 of a

main-sequence M5 star (see Appendix A of Dobler et al.

2006). Flows in the exterior to the star are damped

through the term fd = − U
τdamp

fe(r), where τdamp is a

damping timescale, and fe(r) = 1
2

(
1 + tanh

r−rdamp

wdamp

)
,

where rdamp = 1.03R and wdamp = 0.03R. The damp-

ing timescale τdamp ≈ 0.2τff , where τff =
√
R3/GM is

the free-fall time, G is the gravitational constant, and

M is the mass of the star.

The radiative flux is given by Frad = −K∇T , where

K(ρ, T ) = K0(ρ/ρ0)a−1(T/T0)b+3, (5)

with a = −1 and b = 7/2 corresponds to the Kramers

opacity law (e.g. Brandenburg et al. 2000). Additional

SGS entropy flux is included with FSGS = −χSGSρ∇s′,
where s′ = s − 〈s〉t, are the fluctuations of the en-

tropy, and 〈s〉t(x, t) is a running temporal mean com-

puted over an interval of ten free-fall times. Nuclear

energy production in the core of the star is parameter-

ized by the heating term H with a Gaussian profile,

H (r) = Lsim

(2πw2
L)3/2

exp
(
− r2

2w2
L

)
, where Lsim is the lumi-

nosity and wL = 0.162R is the width of the Gaussian.

The cooling term C models radiative losses above the

stellar surface with C (x) = ρcP
T (x)−Tsurf

τcool
fe(r), where

τcool = τdamp is a cooling timescale and Tsurf the fixed

surface temperature.

The fluid and magnetic Reynolds numbers, and the

Péclet number are given by Re = urms/(νk1), ReM =

PrMRe = urms/(ηk1), Pe = PrSGSRe = urms/(χSGSk1),

where urms is the volume-averaged rms-velocity in the

CZ and k1 = 2π/∆R the wavenumber corresponding

to the approximate depth of the CZ with ∆r = 0.35R,

and where PrM = ν/η and PrSGS = ν/χSGS are the

magnetic and SGS Prandtl numbers, respectively. Ro-

tational influence on the flow is measured by the Cori-

olis number, Co = 2Ω0/(urmsk1). Magnetic fields are

measured in terms of the equipartition field strength

Beq = 〈
√
µ0ρU2〉 where 〈.〉 refers to volume averag-

ing over the CZ. Mean values are taken to be azimuthal

averages and denoted by overbars. The Pencil Code

(Pencil Code Collaboration et al. 2021)1 was used to

make the simulations.

The set-up of the simulations is otherwise identical to

those in Käpylä (2021) except that the amplitude of the

radiative conductivity K0 is enhanced such that in the

thermodynamically saturated state the star has a ra-

diative core (CZ) that encompasses roughly two thirds

(one third) of stellar radius. Furthermore, the diffu-

sion coefficients η, ν, and χSGS have radial profiles such

1 https://github.com/pencil-code/

https://github.com/pencil-code/
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Table 1. Summary of the simulations. Emag = 1
2
〈B2/µ0〉 and Ekin = 1

2
〈ρU2〉 are the total magnetic and

kinetic energies, and Epol
mag = 1

2
〈(B2

r +B
2
θ)/µ0〉, Etor

mag = 1
2
〈B2

φ/µ0〉, EMC
kin = 1

2
〈ρ(U

2
r + U

2
θ)〉, and EDR

kin = 1
2
〈ρU2

φ〉
refer to the energies of the poloidal and toroidal magnetic fields, and the meridional circulation and differential
rotation, respectively. P surf

cyc and P deep
cyc are the cycle periods measured from Br at the surface and Bφ at the

base of the CZ. PrM = 0.5 and PrSGS = 0.2 in all runs except run C1 where PrM = 1.

Run Co Re Pe ReM Emag/Ekin EMC
kin EDR

kin Epol
mag Etor

mag Prot/P
surf
cyc [10−3] Prot/P

deep
cyc [10−3] Grid

A 5.6 55 11 27 0.61 0.011 0.038 0.091 0.128 3.7± 0.8 3.4± 0.5 2883

B 7.0 53 10 26 0.63 0.010 0.050 0.094 0.152 5.5± 0.4 5.1± 0.3 2883

C 10.0 49 9 24 0.61 0.008 0.050 0.096 0.146 4.6± 0.4 4.1± 0.2 2883

Cm 9.7 102 20 51 0.66 0.008 0.034 0.055 0.081 5.1± 0.5 4.9± 0.4 5763

C1 9.9 100 20 100 0.71 0.008 0.033 0.030 0.044 5.0± 0.8 5.5± 0.8 5763

Ch 9.5 260 52 130 0.69 0.008 0.035 0.026 0.041 (3.6) (3.6) 11523

D 17.3 42 8 21 0.63 0.006 0.019 0.117 0.071 4.8± 0.3 4.0± 0.3 2883

that their values in the radiative core are 102 smaller

than in the CZ to avoid diffusive spreading of magnetic

fields and flows into the core. This nevertheless happens

in many runs during the initial transient toward a sta-

tistically steady state for the flow. This is due to the

fact that the initial state of the simulations is an isen-

tropic polytrope, and because of this choice, the star

is fully convective in the early stages. To circumvent

this issue the magnetic field is rescaled to 10−6Beq level

after a statistically steady state for the flow and thermo-

dynamics is reached. The simulations are then further

evolved until the magnetic field reaches a statistically

steady state. The simulations at the higher resolutions

(5763 and 11523) were remeshed from such saturated

snapshots from the low resolution (2883) cases.

3. RESULTS

The simulations are summarized in Table 1. The mod-

els cover a modest range of Coriolis numbers between

5.6 and 17 where cyclic dynamos with a dominating ax-
isymmetric magnetic fields are found. Runs with slower

rotation produce quasi-static magnetic fields whereas for

more rapid rotation non-axisymmetric fields and less co-

herent cycles become dominant. The run with the high-

est resolution (Ch) has completed only one full cycle and

therefore it is not used in the statistical analysis of the

cycle periods, but merely to demonstrate that the cycles

persists also at higher Reynolds numbers. A more com-

prehensive study of the simulations including the slower

and faster rotation cases will be presented elsewhere.

3.1. Magnetic fields and cycles

The current simulations produce dynamos where the

magnetic energy Emag is a significant fraction of the ki-

netic energy Ekin; see the sixth column of Table 1. The

ratio Emag/Ekin is practically constant as a function of

Co in the parameter regime studied here, which differs

from the scaling found in Augustson et al. (2019), and

the MAC balance which is often assumed to hold for the

saturation level of magnetic fields (e.g. Brun & Brown-

ing 2017).

The azimuthally averaged radial magnetic fields near

the surface of the star, and the toroidal magnetic field

near the base of the CZ for runs A, C, and D are shown

in Figure 1 panels (a, d, g) and (b, e, h), respectively.

The rest of the runs follow very similar patterns. All of

these cases show a solar-like pattern of magnetic field

evolution at the surface with strong radial fields concen-

trated in latitudes |θ| < 50◦ and activity propagating

equatorward. A weaker poleward branch is visible in

some runs; see Figure 1(b). While a similar pattern can

be seen for Bφ near the surface, the dynamo wave prop-

agates poleward near the base of the CZ.

Power spectra of the velocity and magnetic fields from

a spherical harmonic decomposition are shown in Fig-

ure 1(c, f, i) for runs A, C, and D. The magnetic power

spectrum has its maximum at the largest possible scale

(` = 1) for all runs. The maximum of the velocity

power occurs at ` & 20, and the peak moves to larger `

with increasing rotation as the convective cells become

smaller. The spectra indicate a clear separation of scales

between the dominant scales of convection and those of

the magnetic field. The insets of Figure 1(c, f, i) show

the fraction of the power in the axisymmetric (m = 0)

part for ` ≤ 10. In this range, the equatorially asym-

metric axissymmetric contributions with odd ` domi-

nate the velocity field. However, these contributions are

still clearly subdominant in the kinetic energy which is

dominated by convective flows with ` & 10. The large-

scale magnetic fields are dominated by the axisymmetric

(`,m) = (1, 0) component with half or more of the total

power in all cases.

The evolution of the mean magnetic fields in runs

A, C, and D is shown in the animations in Figure 2.



4 Käpylä, P.J.

Figure 1. Panels (a), (d), (g): Azimuthally averaged radial magnetic field Br(θ, t) from r = R for runs A (top), C (middle),
and D (bottom). Panels (b), (e), (h): Azimuthally averaged toroidal field Bφ(θ, t) from r = 0.65R. The field strength is
given in terms of the equipartition field Beq. Panels (c), (f), (i): Power spectra of the velocity (EK) and magnetic fields
(EM) from r = 0.85R as functions of spherical harmonic degree `. The grey (yellow) lines indicate non-axisymmetric (m 6= 0)
contributions. Dotted lines indicate the Kolmogorov `−5/3 scaling. The inset shows the normalized fraction of the axisymmetric
(m = 0) contributions.

These visualizations show that strong magnetic fields

are concentrated near the surface of the star outside the

tangent cylinder, and near the interface between radia-

tive and convection zones inside the tangent cylinder.

Strong magnetic fields can also be found within the CZ

at higher latitudes. This could suggest the presence of

multiple dynamo modes which have been detected in

simulations previously (e.g. Käpylä et al. 2016; Beau-

doin et al. 2016). In distinction to these studies, the

cycles in the deep parts and near the surface in the cur-

rent simulations are synchronised such that their periods

are the same. Magnetic fields also penetrate into the up-

per part of the radiative core down to a depth r ≈ 0.5R.

The extent of this penetration is highly likely unrealistic

but such effects, albeit quantitatively different, can still

conceivably occur at the interfaces of stellar radiative

and convective zones.

3.2. Flow states and dynamo considerations

All of the current simulations are in the solar-like dif-

ferential rotation regime, which is characterised by a

faster equator and slower poles; see Figure 3(a). How-

ever, the differential rotation is in general weak, such

that the amplitude is typically of the order of a couple of

per cent of Ω0 everywhere except near the axis where the

data is poorly converged. This is also apparent from the

seventh and eighth columns Table 1 which show that the

energies associated with differential rotation and merid-

ional circulation are at most a few per cent of the total

kinetic energy. This is partly due to the damping of

flows in the exterior which exerts a torque that opposes

differential rotation. Nevertheless, the current simula-

tions also show a minimum of Ω at mid-latitudes, which

has been conjectured to be the cause of equatorward mi-

gration by a dominating αΩ dynamo in earlier spherical

shell simulations (Warnecke et al. 2014).

The other ingredient in such models is the kinetic he-

licity, H = ω ·U , where ω = ∇ × U is the vorticity,

which is negative (positive) in the upper (lower) part

of the CZ in the northern hemisphere; Figure 3(b). A

sign change of H occurs in the deep layers of the CZ

everywhere except near the equator, which is a com-
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Figure 2. Azimuthally averaged magnetic fields in units of Beq in cylindrical coordinates ($, z) for runs A (a), C (b), and D
(c) as functions of time for a time span of 3 × 103 free-fall times. The colour contours show the toroidal fields and the arrows
indicate poloidal fields. The grey lines indicate the approximate bottom of the CZ (r = 0.65R) and the surface of the star
(r = R).

Figure 3. Normalized mean angular velocity Ω/Ω0 = Uφ/(r sin θΩ0) + 1 (colour contours) and meridional circulation (arrows)

(a), normalized kinetic helicity H̃ = H/(urmsωrms) (b), and the normalized product H̃ ∂Ω
∂r

(c) from run Cm.
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mon feature in overshooting convection (e.g. Ossendri-

jver et al. 2001; Käpylä et al. 2009). Thus the sign of

kinetic helicity follows the sign of g ·Ω in the bulk of the

convection zone, and a significant helicity inversion and

a consequent reversal of the dynamo wave as suggested

by Duarte et al. (2016) does not occur.

The product of the radial gradient of Ω and H de-

termines the propagation direction of the dynamo wave

in αΩ dynamos (Parker 1955; Yoshimura 1975). Fig-

ure 3(c) indicates both poleward (H∂rΩ < 0) and equa-

torward (H∂rΩ > 0) regions outside the tangent cylin-

der, and predominantly poleward propagation in the

lower part of the CZ inside the tangent cylinder. It

is tempting to associate the equatorward branch near

the surface with a corresponding patch of positive H̃ ∂Ω
∂r

and the poleward branch in the deep parts with a corre-

sponding patch of negative H̃ ∂Ω
∂r (in the northern hemi-

sphere). However, the Parker-Yoshimura rule applies

strictly only in the case of a pure αΩ dynamo with spa-

tially constant helicity and turbulent diffusion. The low

ratio of toroidal to poloidal magnetic energies (10th and

11th columns in Table 1) also suggests that the dynamos

in the current simulations are not of αΩ type.

In addition to the already mentioned helicity inver-

sion, further possibilities to excite equatorward propa-

gation include the near-surface shear (e.g. Brandenburg

2005), and an α2 dynamo with a sign change of helic-

ity at the equator (e.g. Mitra et al. 2010). Neither of

these possibilities can be ruled out immediately with

the data at hand, although the shear near the surface

is not very prominent in the current simulations. How-

ever, explanations based on such simple models should

be considered with caution in light of a recent study by

Warnecke et al. (2021), who found that to explanation

the cause and evolution of large-scale magnetism in a

spherical shell simulation required a mean-field model

with 24 turbulent transport coefficients derived using

the test-field method (e.g. Schrinner et al. 2007).

3.3. Rotational scaling of dynamo cycles

Long-term observations of chromospheric emission of

late-type stars suggest that many such stars have mag-

netic cycles similar to the Sun (e.g. Baliunas et al. 1995).

It has also been suggested that the ratio of stellar ro-

tation and cycle periods fall into a number branches

as a function of the Coriolis number (e.g. Brandenburg

et al. 1998, 2017). These studies suggest inactive and

active branches with Prot/Pcyc ∝ Coβ where β > 0.

However, the exact nature (Olspert et al. 2018), and

the signifigance of the branches continues to be debated

(e.g. Boro Saikia et al. 2018). It is nevertheless inter-

esting to measure the ratio Prot/Pcyc from simulations

Figure 4. Rotation to cycle period as function of Co with
Prot/P

surf
cyc (black), Prot/P

deep
cyc (grey). Additional data is

from Warnecke (2018) (red) and Strugarek et al. (2018)
(blue). The dotted lines show linear fits to the data. Data
point for the Sun (�) is indicated at the left y-axis.

to see if any systematics can be found. This has been

done in a handful of studies: Warnecke (2018) found

β = −0.98 ± 0.04 whereas a somewhat steeper relation

with β = −1.6 ± 0.14 was reported by Strugarek et al.

(2018). Furthermore, the results from a more hetero-

geneous set of simulations by Viviani et al. (2018) also

suggest β < 0. A notable exception is the study of Guer-

rero et al. (2019) who found a flat (β ≈ 0) or slightly

positive β for rapid rotation.

The cycle periods from the current simulations are

computed using libeemd library (Luukko et al. 2015)

using the ensemble empirical mode decomposition

(EEMD). Periods are determined from Br(R, θd, t) and

Bφ(0.65R, θd, t), where −45◦ < θd < 45◦ is the range

of latitudes considered. The mode with the largest en-

ergy is identified as the primary cycle and the period is

computed from zero crossings of that mode. The mean

cycle period Pcyc is taken to be the average over θd. Er-

ror estimates are provided by dividing the time series

in three parts and repeating the analysis for each part.

The largest deviation from the mean period over the

full time series is taken to represent the error. The cur-

rent results indicate that the ratio Prot/Pcyc is almost

independent of Co in the parameter range explored here

with β = 0.13± 0.17 (β = −0.01± 0.21) for the surface

(deep) cycles; see Figure 4. These results differ quali-

tatively from those of Warnecke (2018) and Strugarek

et al. (2018) that are also shown in Figure 42. Guer-

rero et al. (2019) reported results for Prot/Pcyc that are

similar to those obtained here from models that also

2 The Rossby numbers from Strugarek et al. (2018) were converted
to Coriolis numbers as Co = 2π/Rob.
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included a radiative layer below the CZ. However, the

magnetic field configurations achieved in that study are

quite different from those here such that, e.g., no clear

equatorward migration is obtained.

The ratio Prot/Pcyc in the current simulations is be-

tween (3 . . . 5) × 10−3 which is close to the solar value

P�rot/P
�
cyc ≈ 6.5 × 10−3 with P�rot = 26 days and

P�cyc ≈ 11 years. Coupled with the near independence

of Prot/Pcyc on Co suggests that the dynamos in the

current simulations might capture some of the charac-

teristics of stars in the inactive branch where also the

Sun belongs to (e.g. Brandenburg et al. 1998). However,

at the same time it is clear that the current simulations

do not reproduce many other aspects of the Sun, such as

the structure and magnitude of the differential rotation.

4. CONCLUSIONS

Star-in-a-box simulations of a solar-like convective en-

velope were shown to produce solar-like magnetic activ-

ity on a limited range of rotation rates. The current

simulations share many characteristics of earlier spher-

ical shells models (e.g. Käpylä et al. 2012), including

a local minimum of Ω at midlatitudes which has been

conjectured to be the cause of equatorward migration in

those studies (Warnecke et al. 2014). However, the mag-

netic cycles in the current simulations show differences

to the earlier studies in that the equatorward migration

of the active latitudes is not restricted to mid-latitudes

with negative radial differential rotation. Furthermore,

the rotational scaling of the cycles is qualitatively dif-

ferent from the earlier studies in spherical shells (e.g.

Warnecke 2018), with a weak dependence of Prot/Pcyc

on rotation.

However, several differences to earlier studies can be

readily identified. These include the addition of a sim-

plified corona which provides a free surface for the

magnetic field rather than imposing simplified surface

boundary conditions (see also Warnecke et al. 2016).

Another difference is the inclusion of the radiative core

where strong magnetic fields can be stored and possi-

bly amplified by means other than helical convection

(e.g. Guerrero et al. 2019). Finally, changing the ge-

ometry and size of the system also allows, in general, a

wider spectrum of dynamo modes that can be excited.

A more detailed analysis of the maintenance of the mag-

netic fields is needed to precisely pinpoint the differences

to the earlier studies. Nevertheless, the current results

suggest that regions outside of the CZ shape the global

dynamo solutions, and that perhaps the dynamos in the

Sun and other inactive stars harbor dynamos where such

effects are important.

This work was supported by the Deutsche Forshungs-

gemeinschaft Heisenberg grant KA4825/4-1. The simu-

lations were made using the HLRN-IV supercomputers

Emmy and Lise hosted by the North German Super-

computing Alliance (HLRN) in Göttingen and Berlin,

Germany.

Software: Pencil Code (Pencil Code Collaboration

et al. 2021), numpy (Harris et al. 2020)
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